The Node-Weighted Steiner Problem in Graphs of Restricted Node Weights

نویسنده

  • Spyros Angelopoulos
چکیده

In this paper we study a variant of the Node-Weighted Steiner Tree problem in which the weights (costs) of vertices are restricted, in the sense that the ratio of the maximum node weight to the minimum node weight is bounded by a quantity α. This problem has applications in multicast routing where the cost of participating routers must be taken into consideration and the network is relatively homogenous in terms of the cost of the routers. We consider both online and offline versions of the problem. For the offline version we show an upper bound of O(min{log α, log k}) on the approximation ratio of deterministic algorithms (where k is the number of terminals). We also prove that the bound is tight unless P = NP . For the online version we show a tight bound of Θ(max{min{α, k}, log k}), which applies to both deterministic and randomized algorithms. We also show how to apply (and extend to node-weighted graphs) recent work of Alon et al. so as to obtain a randomized online algorithm with competitive ratio O(log m log k), where m is the number of the edges in the graph, independently of the value of α. All our bounds also hold for the Generalized Node-Weighted Steiner Problem, in which only connectivity between pairs of vertices must be guaranteed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PTAS for Node-Weighted Steiner Tree in Unit Disk Graphs

The node-weighted Steiner tree problem is a variation of classical Steiner minimum tree problem. Given a graph G = (V,E) with node weight function C : V → R and a subset X of V , the node-weighted Steiner tree problem is to find a Steiner tree for the set X such that its total weight is minimum. In this paper, we study this problem in unit disk graphs and present a (1+ε)-approximation algorithm...

متن کامل

Approximation Algorithms for Node-Weighted Prize-Collecting Steiner Tree Problems on Planar Graphs

Abstract. We study the prize-collecting version of the Node-weighted Steiner Tree problem (NWPCST) restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm for planar NWPCST. We then show a (2.88+ǫ)-approximation which establishes a new best approximation guarantee for planar NWPCST. This is done by combining our LMP algorithm with ...

متن کامل

Primal-Dual Approximation Algorithms for Node-Weighted Network Design in Planar Graphs

We present primal-dual algorithms which give a 2.4 approximation for a class of node-weighted network design problems in planar graphs, introduced by Demaine, Hajiaghayi and Klein (ICALP’09). This class includes Node-Weighted Steiner Forest problem studied recently by Moldenhauer (ICALP’11) and other nodeweighted problems in planar graphs that can be expressed using (0, 1)-proper functions intr...

متن کامل

Node-Weighted Network Design in Planar and Minor-Closed Families of Graphs

We consider node-weighted network design in planar and minor-closed families of graphs. In particular we focus on the edge-connectivity survivable network design problem (EC-SNDP). The input consists of a node-weighted undirected graph G = (V,E) and integral connectivity requirements r(uv) for each pair of nodes uv. The goal is to find a minimum node-weighted subgraph H of G such that, for each...

متن کامل

Approximations for node-weighted Steiner tree in unit disk graphs

Given a node-weighted connected graph and a subset of terminals, the problem node-weighted Steiner tree (NWST) seeks a lightest tree connecting a given set of terminals in a node-weighted graph. While NWST in general graphs are as hard as Set Cover, NWST restricted to unit-disk graphs (UDGs) admits X. Xu, H. Du, P.-J. Wan were supported in part by NSF under grant CNS-0831831. Y. Wang was suppor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006